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ABSTRACT

Using a singular solution for a part circular crack by F. W. Smith,

a Taylor Series Correction Method (TSCM) was verified for extracting stress

intensity factors from photoelastic data. Photoelastic experiments were

then conducted on plates with part circular and flat bottomed cracks for

flaw depth to thickness ratios of 0.25, 0.50 and 0.75 and for equivalent

flaw depth to equivalent ellipse length values ranging from 0.066 to 0.319.

Experimental results agreed well with the Smith theory but indicated that

the use of the "equivalent" semi-elliptical flaw for correlating the part

circular flaw results with semi-elliptical flaw results was not valid for

a/2c << 0.20. Best overall agreement for the moderate (a/t - 0.5) to deep

flaws (a/t - 0.75) and a/2c > 0.15 was found with a semi-empirical theory

due to J. C. Newman when compared on the basis of equivalent flaw depth

and area. The Smith theory, when correlated on the basis of flaw depth

and area, appears to yield reasonable estimates (within 10%) of the SIF for

flat bottomed flaws for the geometries studied here.
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NOMENCLATURE
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- Stress components in a plane normal to the crack border (psi)

- Mode I Stress Intensity Factor (lbs./[in]3/2

- Polar coordinates (inches, radians)

- Flaw depth (inches)

- Radius of penetrating circle (inches)

- Flaw length in plate surface (inches)

- Plate thickness (inches)

- Eccentric angle of ellipse (radians)

- Normal stress parallel to crack surface in singular region

(psi)

- Fringe order

- Material fringe value (lbs/in/order)

- Maximum shearing stress in plane perpendicular to crack

border (psi)

- Maximum remote shearing stress in plane perpendicular to

crack border at plate surface (psi)

- Apparent stress intensity factor (lbs/[in]3/2)

- Theoretical stress intensity factor (lbs/[in]3/2)

- Approximate stress intensity factor (lbs/[in]3/2)
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INTRODUCTION

The first analytical expression for stress intensity factors due to

surface flaws was apparently developed by G. R. Irwin [1] for a semi-

elliptical flaw in a half space in 1962. His result was obtained by

utilizing the crack opening displacements obtained by Green and Sneddon [2]

for an embedded elliptical flaw. Irwin's result contained empirical cor-

rections for free surface and plasticity effects. It did not contain back

surface effects, which have since been found to be quite importantespecially

for deep flaws. A number of expressions were subsequently developed for

accounting for the back surface effect. One of the better approximate

theories which illustrates a typical approach involving independent front

and back surface corrections is due to F. W. Smith [3]. He assumed that the

stress intensity factors for the semi-elliptical and semi-circular cracks

were related in the same way as the embedded elliptical and penny-shaped

cracks, and empirically adjusted the relations so the solution would

coalesce with semi-circular and edge crack solutions. Following this work,

Smith and Alavi [4], using a Schwartz Alternating Technique developed by

Smith, Emery and Kobayashi [5], obtained the stress intensity factor (SIF)

at the point of maximum flaw penetration for a part circular crack in a half-

space. This study was extended by Smith and Thresher [6] in 1969 to the

finite thickness plate. More recently, Smith [7] has correlated the part

circular flaw analysis with experimental results for semi-elliptical

surface flaws. During the same period, Kobayashi and his associates have

been studying the semi-elliptical surface flaw problem quite extensively

[8],[9],[10] and Rice and Levy [11], by replacing the flaw with a continuous

non-linear spring and utilizing an edge crack solution, have developed an
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approximate solution to the problem. Very recently,Shah and Kobayashi [12]

have presented a survey of available approximate solutions to the problem.

The surface flaw problem is a three-dimensional problem which has

remained intractable to a complete solution for some years. Approximate

theories such as some of those mentioned above are available which provide

approximate theoretical stress intensity factors over a complete range of

semi-elliptical flaw and plate depth geometries. However, experimental

verification of such theories has not been obtained for certain geometrical

ranges, especially the range of fairly long and deep flaws. A fairly

comprehensive collection of both analytical and experimental results are

found in Ref. [12] and utilization of these works to develop fracture criteria

is due to Newman [13]. It is the purpose of the present study to develop a

reliable photoelastic procedure for determining the stress intensity factor

experimentally and to use this procedure to study stress fields for long,

deep cracks and obtain the corresponding stress intensity factors.

ANALYTICAL CONSIDERATIONS

The theory of fracture mechanics predicts that there is a zone near

the tip of a crack border where the stress field in a plane perpendicular

to the crack border can be represented by means of a field theory consisting

of two degrees of freedom, or two parameters. These parameters are the

stress intensity factor (SIF) represented by KI, and the normal stress in

the direction of crack extension a. KI is the parameter of the singular

stress field and a; is a parameter of the regular part of the stress field

and is considered to be a constant near the crack tip. A considerable

amount of work [14] - [22] has been done in recent years in which the photo-
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elastic method has been used to study crack tip stress fields and to obtain

stress intensity factors from photoelastic data [23] - [30]. In photo-

elasticity, one obtains measurements in the form of stress fringes which

are proportional to the maximum in-plane shear stress. When one computes

theoretical fringes from the two-degree of freedom system of equations

mentioned above, one obtains eccentric fringe loops which intersect at

the tip of the branch cut representing the crack tip. These loops are

controlled by KI but are subject to distortion due to a, [28]. The fringe

loops, however, always tend to separate furthest along or near a line normal

to the crack surface and passing through the crack tip. For this reason,

the authors have elected to measure fringe loop heights along such lines,

since clearest fringe order discrimination is always best in this neighbor-

hood near the crack tip. Thus,all stresses obtained from the stress field

equations will be evaluated along 0 = 7r/2, representing the above mentioned

direction.

Beginning with the stress components in a plane normal to the crack

border in the Mode I form for the two-degree of freedom system:

ann (2r)i/2 cos 2 1 - sin 0 sin 32j - O

azz -( )1/2 cos (1 + sin sin0] (1)

Tnz = (2)1/2 (sin T cos cos )

where the notation is given in Figure 1.

We may substitute Eqs. (1) into
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Tmax 4 {(Ann azz )2 + 4Tz} (2)

and evaluate T2  along e = 7r/2 to yieldmax

Ki2  KI~ Co'2

Tmax + (3)
4(7rr)1/2

which may be combined with the stress-optic law:

n'f 4
= ~ (4)

Tmax 2t

in order to obtain an equation involving the unknowns n', r, KI and 'O.

By measuring pairs of values of nr for two different fringes, two equa-

tions result from which aO can be eliminated to solve for KI. By using

all pairs of fringe loops, a set of values of KI result which may be data

conditioned to yield accurate results. The details of the method are

described in References [28] and [29] and the method has also been employed

by Kobayashi and his associates [31], [32].

The two-degree of freedom method is quite adequate for analyzing

photoelastic data when the data are taken in the zone dominated by the

crack surface boundaries only. However, when other boundaries are near,

as is the case with deep flaws, or if other boundaries or loadings exert

strong effects on the crack tip region,the field dominated by the two

parameter stress system may be severely constricted [33] and the range of

photoelastic data may lie outside of this range. In such cases, additional

degrees of freedom must be provided in the analytical expressions for the

stresses in order to account for such effects. A simple way of achieving

this result is to apply a Taylor Series Correction to Tmax in the form
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A m
Tmax - /2 + B + ) Cnrn (5)

r1 ma nrl

which may be compared to the two degree of freedom approach by rewriting

Equation (3) as:

qa ( aA' + B'+ Crl/2 where B'= f(A,C) (6)Tmax r(6)

The Taylor series is expressed in terms of rn rather than rn/2 to enhance

convergence.

For problems in which all data are taken in the valid singular zone,

Equation (6) would be appropriate. The corresponding form for Equation (5)

would consist of only the first two terms and the difference in the two

equations may be regarded as a truncation error. The Taylor Series Cor-

rection Method (TSCM) when applied to two dimensional problems, is equiv-

alent to expanding the stress components in terms of a Williams stress

function [34] and computing Tmax from Equation (2).

The computer program utilized by the TSCM adds terms in the Taylor

Series one at a time, and recomputes A, B, Cn by a least squares procedure

after each new term is added. Convergence of A to its proper value is

rapid and in the present study always occurred in less than six terms.

However, the program must be accompanied by a truncation criterion, for

if it is allowed to continue, random experimental error will eventually

lead to unreliable values of A. The authors have found that by truncating

the series when the mth term changes the value of Tmax by an amount com-

parable to the estimated experimental error, good results are usually obtained.

th tIf the experimental error lies between two terms, say mth - 1 and mth,

corresponding KI values may be averaged. It is expected that, as experience

is gained with the method, a more precise truncation criterion can be
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developed. Verification of the convergence of the method is described

in Reference [30].

THE EXPERIMENTS

A set of photoelastic experiments employing the stress freezing tech-

nique was designed to obtain photoelastic data on the stress fields near

points of deepest flaw penetration in cracked specimen models of various

crack and plate depth geometries. Pilot tests revealed that it would not

be feasible to use "natural" cracks due to the fact that the low value of

the threshold Kicfor stress freezing photoelastic materials tends to pro-

duce premature failures in the stress freezing process for deep flaws

under tensile loads. Since F. W. Smith has correlated his part circular

crack theory with experimental data on semi-elliptical flaws by matching

the flaw depth and curvatures, it was decided to produce part circular

cracks with a 0.006" thick circular saw, and compare the result with the

Smith theory directly to validate the experimental result, and then to

convert the experimental data to semi-elliptical form on the basis of

matching depth and curvature, depth and length,or depth and area for com-

parison with other theories. These theories are briefly described in

Appendix A.

Materials and Models - Two stress freezing materials were used in the

experiments. They were Hysol 4290 and PLM-4B, the former manufactured by

Hysol Corporation of Olean, New York, and the latter by Photoelastic Inc.

of Malvern, Pa. Both materials possess a low material fringe value in

the rubbery range and were relatively easy to machine. The thermal cycles

for annealing and stress freezing were:
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Hysol: Heat to 280°F in 2 hours; soak for 6 hours. Cool at

5°F/hr. to room temperature (2-day cycle).

PLM-4B: Heat to 260°F in 4 hours; soak for 16 hours. Cool at

3°F/hr. to room temperature (4-day cycle).

The procedure used for the Hysol was to rough cut, anneal, saw in the crack

and then stress freeze. For the PLM-4B, surfaces were milled first, then

the crack was sawed in,followed by stress freezing. Holes were drilled

before stress freezing near the ends of each plate to receive pins through

which the loads were applied. A typical specimen is shown in Figure 2.

Loading System and Procedure - Test specimens were suspended and loaded

through nylon lines passing through fishing swivels to pins in small holes

near the plate ends. The lines were "tuned" under full load to insure

proper load distribution. The load was then removed and the stress freez-

ing cycle was begun. The live load was applied near the end of the thermal

soak, and the specimens were cooled, freezing in the stresses and deforma-

tions. A photo of the test set-up is shown in Figure 3 and a flaw is

shown after stress freezing in Figure 4. Slicing was then done according

to Figure 5 and the slices were placed in an oil bath of the same index of

refraction as the model material,between two partial mirrors of a fringe

multiplication system in a circular polariscope. Stress fringes were

photographed. Figure 6(a) shows a typical unmultiplied fringe pattern and

Figure 6(b) shows the fifth multiple. The unmultiplied pattern was used to

locate integral or half-integer order fringes. In Figure 6, fringe patterns

are in a bright field.
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RESULTS AND DISCUSSION

Data on all tests are found in the upper part of Table I. The part

circular flaw tests were grouped according to a/t values as follows:

Group I a/t 0.25 Tests 1, 2 and 3

Group II a/t = 0.50 Tests 4, 5, 6 and 7

Group III a/t = 0.75 Tests 8, 9, 10 and 11.

Finally, deep, long, flat bottom cracks with part circular edges were

tested in Group IV, Tests 12 and 13. Experimental values of maximum in-

plane shearing stresses were determined directly from the fringe patterns

along lines normal to the crack surface and passing through the crack tip.

These values were used in the TSCM in order to determine the coefficients

in Equation (6) and the experimental SIF. The raw data are shown in

Figures 7 and 8 for each test group together with the fitted curves from

the TSCM. In Figures 9 through 12 the data are replotted to show conver-

gence trends. It might be remarked that, if the data formed a horizontal

straight line in these latter figures, a one term expansion of Equation 5

would be sufficient. For a straight inclined line, a two term expansion

would be adequate. In either of these cases, one would be well within

the zone dominated by the singular stresses.

The extent to which the experimentally determined KTSCM differs from

that predicted by the Smith part circular crack theory is measured from

the ordinate intercept. A value of unity would correspond to exact agree-

ment between theory and the experimental result. The fitted curve used

for extrapolation to the origin comes from the TSCM.

As can be seen from Figure 9, non-linearity is not strong, but is

present to some degree in the shallow flaws. (Group I) For the moderately

deep flaws of Group II, non-linear effects are stronger, and larger errors
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in KI would be obtained if linear data extrapolations were used (Fig. 10).

For deep part circular flaws shown in Figure 11, a proper

method of extrapolation is even more important. The indications are, that

as the flaw grows deeper and longer, the zone dominated by the singular

term shrinks in size and, moreover, it is more difficult to measure valid

data close to the crack tip. However, by accepting the data where they can

be obtained most accurately, valid trends can be obtained.

In order to cover the range of geometry studied in this program, it

was necessary to extrapolate from the curves generated by the Smith theory.

All extrapolation was linear.

The poorest agreement between the experimental results and the Smith

theory for part circular flaws was about 10%. (Table I) However, the value of

Poisson's ratio for the test materials was 0.49 as compared to a value of

0.25 used in the Smith theory. Estimates by F. W. Smith and independently

by the authors indicate that this order of difference might be expected

to increase KI by 5 to 10, depending upon the geometry. On this basis,

the experimental error is judged to be within ±5%.

For purposes of comparison with theories for semi-elliptical flaws,

results for the part circular flaws were converted to equivalent semi-

elliptical flaws by equating maximum flaw depths and i) curvatures at

maximum flaw depth, ii) flaw areas, and iii) flaw surface lengths. These

comparisons are shown in Table I. The general trend is to increase the

respective theoretical K's as one computes equivalent flaws,proceeding i)

through iii). Differences between theoretical predictions for the same

flaw geometry were usually within 10% but, in some cases, exceeded 20%

(e.g. Shah-Kobayashi vs Rice-Levy for equal flaw depth and length Test 1).
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Similarly, differences between results predicted by the same theory

for cases i, ii) and iii) were generally smaller than 10%, but for some

cases in Group III, were quite large, [e.g., Test 8 Rice-Levy i) vs. Rice-

Levy iii)]. Moreover, substantial differences are observed between the

theory of F. W. Smith and the other theories for equivalent geometries

(e.g., Tests 7, 10 and 11) for the longer or deeper, and longer and deeper

flaws,as well as for Group I.

In correlating his theory with experimental results, Smith compared it

with "equivalent" semi-elliptical surface flaws at equal flaw depth and

curvature. He found that the fracture toughness data scatter about the

"equivalent" theoretical curve was + 10% for a/2c values of 0.21 to 0.42

and over a full range of a/t from nearly zero to unity. Thus, Group I

and Tests 7, 11, 12 and 13 fall outside the range of Smith's correlation.

However, Tests 7 and 11 were judged close enough to Smith's range of

a/2c values to be included. The results as displayed in Table I show

that the tests in Group I do not,in fact, agree with any of the approximate

theories based on any of the three methods of converting part-circular

results to semi-elliptical results. This suggests that "equivalent" com-

parisons between part-circular and semi-elliptical flaw results are not

valid in the Group I range. Agreement between experiment and "equivalent"

elliptical flaw results was fair for Group II and was best, in general,

with the Newman Theory,using either equivalent lengths or areas and flaw

depths. The agreement between the Newman Theory and experimental results

in Group III was excellent,using equivalent flaw depth and area.

The results of Group IV are of interest due to the lack of adequate

experimental data for long deep surface flaws. These geometries consisted

of flat bottomed cracks with part-circular sides. Since these geometries

10



were not semi-elliptical and were not within the range of equivalent

cracks correlated by F. W. Smith, it was decided to compare the experi-

mental results with the Smith theory directly as well as with equivalent

semi-elliptical flaws of the same flaw depth and area and length,respectively.

Figure 12 results are normalized with respect to the Smith theory,based upon

equal depth and area,even though this theory does not necessarily apply to the

flat bottomed crack geometry. Nevertheless, extrapolation trends would not

be expected to diverge significantly from those for the long, deep part

circular cracks. Thus,the extrapolation of Figure 12 is judged to be correct,

and suggests that if reasonably valid data are taken, even substantially

outside the singular zone, the TSCM will predict proper extrapolation trends.

It is always desirable, however, to verify extrapolation trends on existing

K solutions as is done here with Smith's theory.

These results seem to indicate that the Smith theory,based on equivalent

depth and area,will give good estimates (within 10%a) of the experimental SIF.

It may be conjectured that the flat bottom crack may be used to experimentally

study long crack geometries and that the Smith theory based upon equivalent

depth and area may be used to estimate SIF values here. However, further

experiments are needed to confirm this conjecture.

aAlthough Test 13 (Fig. 12) shows a 12% difference, about half of this is
believed due to differences in Poisson's Ratio noted earlier for which
no adjustments in data were made.
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SUMMARY AND CONCLUSIONS

A series of three dimensional stress freezing photoelastic experiments

were conducted on plates containing part circular surface flaws and a

Taylor Series Correction Method (TSCM) was used to predict values of the

SIF. Results were compared with a theory due to F. W. Smith for verifica-

tion and, using several methods, to "equivalent" semi-elliptical flaw

theories of Kobayashi and Shah, Rice and Levy and Newman. Tests were also

run on two geometries involving flat bottom cracks with part circular ends

for which similar "equivalent" comparisons were made with the Smith theory.

The above comparisons led to the following conclusions:

a) The Taylor Series Correction Method (TSCM) will yield good estimates

of the SIF when applied to stress frozen models of part circular cracks.

b) Prediction of SIF values for semi-elliptical cracks for fairly

long, shallow flaws a/t 0.25 (Group I) by the "equivalent" flaw method

from part circular flaw theory leads to substantial discrepancies from

results of other semi-elliptical flaw theories.

c) For moderate (a/t 0.5) to deep (a/t 0.75) flaws of moderate

to fairly substantial length (Groups II and III), the Newman theory for

semi-elliptical flaws of the same depth and area yields SIF predictions

to within 10% (in most cases) of experimental results.

d) For long, deep, flat bottomed cracks, the Smith theory for a part

circular flaw of equal area and depth gave a reasonable estimate (within 10%)

of the SIF for the geometries studied here.

On the basis of the limited information presented here, it may be

conjectured that the rather large difference between semi-elliptical flaw

results for very low values of a/2c (say 0.05 or less) and the edge crack
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(a/2c + O) as discussed by Underwood [35] may in fact exist and could be

verified to a limited extent experimentally using flat bottomed cracks

with long flat zones. However, further experiments would be necessary to

support this conjecture.

The results cited here should be regarded as approximations to a com-

plex three dimensional problem. There are many potential sources of error,

but these have been assessed and the included results are believed to

appropriately reflect the three dimensional effects inherent in the prob-

lems studied. Extrapolation to problems of significantly different

geometry is not recommended.
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APPENDIX A - Theoretical Solutions

I - The Smith theory (for a part circular crack) Ref. [7] Using two

solutions,

i) The penny shaped crack in an infinite body subjected to a crack

surface pressure and

ii) A half space loaded with surface tractions on a rectangular por-

tion of the boundary,

Smith applied the Schwartz Alternating Technique utilizing solution

i) on the crack surface and solution ii) on the front face. As he iterated

back and forth, he collected residuals on the back face and then iterated

between the crack surface and the back face. The above procedure was

repeated until residuals were negligible. Smith expressed his results in

the form:
KI 2 M oo(wA)1/2 (A-l)

where:

G0 is the remote extensional stress

A is the radius of the penetrating circle

M = M(a/t, A-a/a) for the point of maximum flaw penetration

Results of this theory are estimated by the author to be well within

5% of the correct value at the point of maximum flaw penetration. Results

are available for values of Poisson's ratio of 0.25 and 0.39.

Correlation with experimental values of KIC for natural semi-elliptic

flaws was obtained by matching flaw depth and curvature over a range of

a/2c of 0.20 to about 0.40. Data scatter of experimental data was

within + 10%.

18



II - The Shah-Kobayashi theory (for a semi-elliptical crack) Ref. [10],

[12] Using two solutions:

i) The embedded elliptical flaw in an infinite body with a pressure

on the crack surface, and

ii) A half space loaded with surface tractions on its surface,

Shah and Kobayashi applied the Schwartz Alternating Technique,utilizing

these solutions and iterating between the crack surface and the back sur-

face of the plate. However, instead of collecting residuals on the front

face and including them in the iteration process as Smith did, they util-

ized a front surface correction factor developed by Kobayashi and Moss

[8]. Thus,the influence of coupling of the front and back surface effects

is not included. It might be added that such an inclusion appears

more complex for the elliptical than for the part circular problem.

The authors expressed their result in the form:

~7Tra(A-2)KI = MK o (A-2)

G0 is the remote extensional stress

a is the flaw depth

b is a complete elliptic integral of the second kind, i.e.,

7rc 2 a' 2~1/
Jo {1 (c 2  2  sin 2 dc

where 2c is the major diameter of the semi-elliptic flaw. (Figure 2)

MK = Product of back and front surface corrections.

Results were obtained using a value of Poisson's Ratio of 0.30. Cor-

relations were made with fracture toughness data which contained a fair

amount of scatter. Correlation with finite element results of Miyamato

and Miyoshi [36] was excellent for a/2c = 0.10, a/t = 0.30 and reasonably
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good for a/2c = 0.10, a/t = 0.8 and a/2c = 0.30 and a/t = 0.8.

III - The Rice-Levy theory (for long surface flaws) Ref. [11].

Rice and Levy replaced the plate cross section containing a surface

flaw with a continuous spring,and employed two dimensional generalized

plane stress and Kirchoff-Poisson plate bending theories to account for

combined extension and bending. The compliance of the surface flaw was

set equal to the compliance of an edge crack under plane strain with

the same flaw depth. The mathematical formulation was reduced to two

coupled integral equations which were solved to yield values of the thick-

ness averaged extensional and nominal bending stresses as a function of

flaw length. For the point of maximum flaw penetration, they computed the

stress intensity factor as:

KI = tl/2[dogt + mogb] (A-3)

where t
N2 2(0,0) 1 +

ao - t U 22(0,0,x3)dx3
t
2

6M22 (0,0) 1 2)dx
m t2 T2 t X322(0,0x3

2

gt, gb = functions of a/t for extension and bending respectively as

obtained for an edge crack.

The x1x2 plane is the middle plane of the plate.

The x3 axis passes through point of maximum flaw penetration.

N22, M22 = normal force and bending moment per unit thickness.

a0, m0 = thickness average stresses for the surface flaw at the

location of maximum flaw penetration.
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Although presumably limited to cracks which were long relative to

plate depth, their results compared favorably with the Smith-Alavi theory

for a part circular surface flaw for the case of remote tension,and for a

nearly semi-circular flaw geometry.

IV - Newman's theory Ref.[13]

The Neuber theory for an elastic plastic material was generalized in

a quasi-empirical manner so as to apply to a crack in a finite plate sub-

jected to tensile loading. A fracture criterion involving two material

parameters is developed,utilizing the results of several earlier theories.

Newman utilized Irwin's [1] expression for the stress intensity factor

for part through cracks in the form of Equation A-2. His correction factor,

Me, however, was an empirical expression adjusted to account for the finite

width effect as well as front and back surface corrections. His equation

may be written as:

KI = Me /a (A-4)

Me is a coefficient which includes front and back surface corrections as

well as a finite width correction.

Newman shows extensive correlation for his fracture criterion for a

variety of materials and crack geometries.
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Notation for Stress Field Near Crack TipFigure 1.
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TABLE I Data and Results

Group

Test #

Part Circular Flaw Length
2m, inches

Radius of Penetrating
Circle, A, inches

Max Flaw Depth
a, inches

Plate Thickness, t, inches

Remote Stress, a, psi

Material Fringe Value
F, lbs/inches/order

Slice Thickness, T, inches

a/t

Finite Width Correction

M/D (Smith)

M/¢ (Experimental)

KI  (Experimental),

lbs/(inches)3/2

KI  (Smith Theory),

lbs/(inches) 3/2

I II III IV

1 2 3 4 5 6 7 8 9 10 11 12a 13a

1.500 0.881 1.199

1.507 0.882 1.500

0.200 0.118

0.779 0.473

13.2 19.1

1.53

0.039

0.257

1.001

1.40

0.090

0.250

1.000

1.15 1.18

1.17 1.28

0.125

0.502

12.3

1.52

0.091

0.249

1.001

1.42

1.52

12.2 14.9 11.7

12.0 13.8 10.9

1.423 1.585 1.989 1.630

0.883 1.000 1.506 1.503

0.360

0.811

13.3

1.51

0.080

0.444

1.005

0.390

0.781

14.5

1.53

0.050

0.499

1.007

0.83 0.86

0.83 0.90

0.375

0.795

13.8

1.53

0.043

0.472

1.006

0.97

0.90 c

11.7 14.8 13.5 c

0.240

0.480

13.8

2.60

0.061

0.500

1.009

1.18

1.33

16.0

11.7 14.1 14.6 14.1

1.580 2.018 1.899 1.554

0.995 1.500 1.503 1.500

0.390

0.520

13.2

1.52

0.059

0.750

1.011

0.96

1.07

15.7

0.390

0.552

11.9

1.52

0.064

0.706

1.015

0.337

0.448

13.6

2.27

0.063

0.752

1.015

1.09 1.21

1.21 1.28

0.217

0.288

13.5

1.52

0.095

0.754

1.009

1.40

1.48

15.9 17.9 16.5

14.0 14.4 16.9 15.6

2.004 3.000

1.500 1.500

0.213

0.284

11.2

1.52

0.099

0.750

1.027

b

2.08

0.219

0.292

6.94

1.52

0. 136

0.750

1.076

b

2.79

19.1 16.1

b b



TABLE I Data and Results (cont.)

II III IV

1 2 3 4 5 6 7 8 9 10 11 12a 13a

Equivalent ellipse based upon

a/2c

M/D (Shah-Kobayashi)

M/D (Rice-Levy)

M/4 (Newman)

KI (Shah-Kobayashi),

lbs/(inches)3/2

KI (Rice-Levy),

lbs/(inches)3/2

KI (Newman),

lbs/(inches)3/2

a/2c

M/c (Shah-Kobayashi)

M/4 (Rice-Levy)

M/O (Newman)

KI (Shah-Kobayashi),

lbs/(inches)3/2

KI (Rice-Levy),

lbs/(inches)3/2

KI (Newman)

lbs/(inches)3/2

0.182

0.98

1.02

10.2

7.-3.

0.183

0.96

0.90

1.02

0.144

1.01

0.97

1 .06

11.2 7.8

10.5

10.7 11.9

Equival

0.155 0.156

1.00 1.00
O.93r
i%49 0.95

1.05 1.05

10.4 11.6

7.5

8.2

ent el 1

0.121

1.04

1.01

1.10

8.0

11.1 7.8

11.0 12.2

0.319

0.81

0.77

0.86

0.312

0.84

0.81

0.87

11.5 13.8 13.6

flaw depth and curvature

0.250 0.200 0.313

0.91 0.97 0.92

0.91 1.00 0.3C

0.97 1.05 0.97

11.6

10.9 13.3 13.6 12.0

12.2 14.4

ipse based upon

0.284

0.86

0.81

0.92

12.2

0.277

0.87

0.85

0.93

14.4

14.6 12.6

flaw depth and

0.216

0.95

0.97

1.03

14.2

0.171

1.02

1.10

1.15

12.2

11.4 14.0 14.6 13.2

8.5 13.0 15.3 15.5 13.8

0.255

0.97

0.71

1.13

0.237

1.04

0.63

1.18

0.190

1.11

0.71

1.33

13.4 12.8 14.5 12.4

4.3 9.3 8.8 7.9

14.2 16.2 16.5 14.6

area

0.277

0.97

0.37

1.07

14.2

0.221

1.02

0.83

1.22

13.5

0.204

1.09

0.75

1.27

15.2

0.162

1.15

0.86

1.47

12.8

5.4 10.9 10.4 9.6

15.6 17.5 17.7 16.4

O.110

1.25

1.17

1.70

11.4

0.070

1.31

1.84

2.30

7.6

Group

Test #

I

10.7 10.6

15.6 13.3

V~



TABLE I Data and Results (cont.)

II III IV

1 2 3 4 5 6 7 8 9 10 121 12a 3a

Equivalent ellipse based upon flaw depth and length

0.253

0.90

0.86

0.96

12.7

12.1

a/2c 0.133 0.134 0.104

M/D (Shah-Kobayashi) 1.02 1.01 1.12

M/¢ (Rice-Levy) '.M5 1.00 1.06

M/D (Newman) 1.08 1.08 1.12

KI (Shah-Kobayashi), 10.7 11.8 8.6

lbs/(inches)3/2

KI (Rice-Levy), e 135.

lbs/(inches)3/2 11.600 8.2

KI (Newman),KI (Newman), 11.3 12.6 8.6

lbs/(inches)3/2

a Flat bottom flaws

b Smith Theory (equivalent area and depth)

Test 12 Test 13

Ki,lbs/(in)3/2 17.7 14.6

M/+ 1.93 2.54

For Groups III and IV, data from Rice-Levy Theory were
extrapolated and are not regarded as accurate except
in an order of magnitude sense.
c Mottling in this test specimen caused a

reduction in KExp of about 10%.

0.246

0.91

0.90

0.96

15.0

0.189

0.98

1.08

1.07

14.7

0.147

1.04

1.18

1.21

12.5

14.9 16.2 14.1

13.6 15.8 16.1 14.5

0.246

1.02

0.48

1.15

14.9

7.0

0.193

1.07

0.95

1.28

14.1

0.178

1.13

0.82

1.38

15.8

0.140

1.19

1.05

1.56

13.3

12.5 11.4 11.7

16.8 18.3 19.3 17.4

Smith Theory (equivalent

Test 12

KI, lbs/(in)3/2 16.1

M/D 1.76

KI (edge crack): Test 12

Test 13

0.106

1.22

1.28

1.73

11.2

11.7

15.8

length and depth)

Test 13

14.2

2.47

67.2 lbs/(in)3/2

42.2 lbs/(in)3/2

Group

Test #

I

0.073

1.32

1.79

2.20

7.6

10.3

12.7




